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Statistical mechanics away from equilibrium is in a formative
stage, where general concepts slowly emerge.

David Ruelle (2008)
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QUANTUM STATISTICAL MECHANICS

• Classical monographs (equilibrium theory):

Ruelle: Statistical Mechanics: Rigorous Results (1969);
Bratteli-Robinson: Operator Algebras and Quantum Statistical Mechan-

ics. I,II (1979/81);
Haag: Local Quantum Physics (1992);
Israel: Convexity in the Theory of Lattice Gases (1979);
Simon: The Statistical Mechanics of Lattice Gases (1993);
Thirring: Quantum Mathematical Physics: Atoms, Molecules and Large

Systems (1980);
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These lectures deal with the second of two relatively ”recent” re-
search directions in the theory of quantum dynamical systems.

• The problem of return to equilibrium (Robinson 1973); 1996–

• Development of non-equilibrium quantum statistical mechan-
ics; 2001–

3



Reviews:
Ruelle: Topics in quantum statistical mechanics and operator algebras (2001);
J-Pillet: Mathematical theory of non-equilibrium quantum statistical mechan-

ics (2002);
Pillet: Quantum dynamical systems (2006);
Aschbacher-J-Pautrat-Pillet: Introduction to non-equilibrium quantum statis-

tical mechanics (2006);

J-Ogata-Pautrat-Pillet: Entropic fluctuations in quantum statistical mechanics

– an introduction (2012).

Papers:
Ruelle: Natural nonequilibrium states in quantum statistical mechanics (2000);
Ruelle: Entropy production in quantum spin systems (2001);
J-Pillet: On entropy production in quantum statistical mechanics (2001);
Many others...
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ROOTS

Quantum theory was much influenced by dynamical system ap-
proach to classical non-equilibrium statistical mechanics devel-
oped in 1990’s (Chaotic hypothesis of Gallavotti-Cohen)

Reviews:
Ruelle: Smooth dynamics and new theoretical ideas in nonequilibrium statis-

tical mechanics (1999);

Gallavotti: Thermostats and chaotic hypothesis (2006);

J-Pillet-Rey-Bellet: Entropic fluctuations in statistical mechanics I. Classical

dynamical systems (2011);
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ENTROPY PRODUCTION OBSERVABLE

Hilbert space H, dimH < ∞. Hamiltonian H.

Observables: O = B(H). ⟨A,B⟩ = tr(A∗B).

State: density matrix ρ > 0. ρ(A) = tr(ρA) = ⟨A⟩.

Time-evolution:

ρt = e−itHρeitH

Ot = eitHOe−itH .

The expectation value of O at time t:

⟨Ot⟩ = tr(ρOt) = tr(ρtO) = ρt(A)
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”Entropy observable” (information function):

S = − log ρ.

Entropy:

S(ρ) = −tr(ρ log ρ) = ⟨S⟩.

Average entropy production over the time interval [0, t]:

∆σ(t) =
1

t
(St − S).

Entropy production observable

σ = lim
t→0

∆σ(t) = i[H,S].

∆σ(t) =
1

t

∫ t

0
σsds.
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The entropy production observable = ”quantum phase space
contraction rate”.

Radon-Nikodym derivative=relative modular operator

∆ρt|ρ(A) = ρtAρ−1.

∆ρt|ρ is a self-adjoint operator on O and

tr(ρ∆ρt|ρ(A)) = tr(ρtA)
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log∆ρt|ρ(A) = (log ρt)A−A log ρ

= log∆ρ|ρ(A) +
(∫ t

0
σ−sds

)
A.

d

dt
log∆ρt|ρ(A)

∣∣∣
t=0

= σA.
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BALANCE EQUATION

Relative entropy

S(ρt|ρ) = tr(ρt(log ρt − log ρ))

= ⟨ρ1/2t , log∆ρt|ρρ
1/2
t ⟩ ≥ 0.

1

t
S(ρt|ρ) = ⟨∆σ(t)⟩ =

1

t

∫ t

0
⟨σs⟩ds.
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OPEN QUANTUM SYSTEMS

S
R2

Rk

RM

R1
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S = R0. Hilbert spaces Hk, k = 0, · · · ,M . Hamiltonians Hk.

Initial states

ρk = e−βkHk/Zk.

Composite system:

H = H0 ⊗ · · · ⊗ HM

ρ = ρ0 ⊗ · · · ⊗ ρM

Hfr =
∑

Hk,

H = Hfr + V.
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Energy change of Rk over the time interval [0, t]:

∆Qk(t) =
1

t
(eitHHke

−itH −Hk).

The energy flux observable

Φk = lim
t→0

∆Qk(t) = i[H,Hk] = i[V,Hk].

∆Qk(t) =
1

t

∫ t

0
Φksds.
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The balance equation takes the familiar form:

S =
∑

βkHk + const

∆σ(t) =
∑

βk∆Qk(t)

σ =
∑

βkΦk

⟨∆σ(t)⟩ =
∑

βk⟨∆Qk(t)⟩ ≥ 0.

Heat flows from hot to cold.
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GOAL I

⟨∆σ(t)⟩ =
1

t

∫ t

0
⟨σs⟩ds.

TD= Thermodynamic limit. Existence of the limit (steady state
entropy production):

⟨σ⟩+ = lim
t→∞

lim
TD

⟨∆σ(t)⟩

⟨σ⟩+ ≥ 0. Strict positivity:

⟨σ⟩+ > 0.
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GOAL II

More ambitious: non-equilibriium steady state (NESS). TD leads
to C∗ quantum dynamical system (O, τ t, ρ).

ρ+(A) = lim
t→∞

1

t

∫ t

0
ρ(τs(A))ds.

⟨σ⟩+ = ρ+(σ).

Structural theory:

σ+ > 0 ⇔ ρ+ ⊥ ρ.
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THE REMARK OF RUELLE

D. Ruelle: ”How should one define entropy production for nonequi-
librium quantum spin systems?” Rev. Math. Phys. 14,701-
707(2002)

The balance equation

⟨∆σ(t)⟩ =
∑

βk⟨∆Qk(t)⟩.

can (should?) be written differently.
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H\k =
⊗

j ̸=kHj. State of the k-th subsystem at time t:

ρkt = trH\kρt.

∆Sk(t) =
1

t
(S(ρkt)− S(ρk)).

∆σk(t)⟩ =
1

t
S(ρkt|ρk)

∆Ŝ(t) =
∑

∆Sk(t)

∆σ̂(t) =
∑

∆σk(t).

Obviously,

∆σ̂(t) ≥ 0.∑
S(ρk) = S(ρ) = S(ρt) and by the sub-additivity:

∆Ŝ(t) ≥ 0.
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One easily verifies

⟨∆σ(t)⟩ = ∆Ŝ(t) +∆σ̂(t).

Set

Ep+ = lim
t→∞

lim
TD

∆Ŝ(t)

∆σ̂+ = lim
t→∞

lim
TD

∆σ̂(t).
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OPEN PROBLEMS

Mathematical structure of the decomposition

⟨σ⟩+ = Ep+ +∆σ̂+.

The existence of Ep+ and ∆σ̂+ in concrete models (to be dis-
cussed latter).

When is ∆σ̂+ = 0? Ruelle: Perhaps when the boundaries be-
tween the small system and the reservoirs are allowed to move
to infinity. This limit is more of less imposed by physics, but
seems hard to analyze mathematically.
Another possibility: adiabatically switched interaction (quasi-static
process)?
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XY SPIN CHAIN

Λ = [A,B] ⊂ Z, Hilbert space HΛ =
⊗

x∈ΛC2.
Hamiltonian

HΛ =
1

2

∑
x∈[A,B[

Jx

(
σ
(1)
x σ

(1)
x+1 + σ

(2)
x σ

(2)
x+1

)

+
1

2

∑
x∈[A,B]

λxσ
(3)
x .

σ
(1)
x =

[
0 1
1 0

]
, σ

(2)
x =

[
0 −i
i 0

]
, σ

(3)
x =

[
1 0
0 −1

]
.
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RL

N

C RR

−M −N M

Central part C (small system S): XY-chain on ΛC = [−N,N ].

Two reservoirs RL/R: XY-chains on ΛL = [−M,−N − 1] and
ΛR = [N +1,M ].

N fixed, thermodynamic limit M → ∞.

Decoupled Hamiltonian Hfr = HΛL
+HΛC +HΛR

.
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The full Hamiltonian is

H = HΛL∪ΛC∪ΛR
= Hfr + VL + VR,

VL =
J−N−1

2

(
σ
(1)
−N−1σ

(1)
−N + σ

(2)
−N−1σ

(2)
−N

)
, etc.

Initial state:

ρ = e−βLHΛL ⊗ ρ0 ⊗ e−βRHΛR
/
Z,

ρ0 = 1/dimHΛC.

Fluxes and entropy production:

ΦL/R = i[H,HL/R],

σ = βLΦL + βRΦR.
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Araki-Ho, Ashbacher-Pillet ∼ 2000-2003
J-Landon-Pillet 2013: NESS exists and

⟨σ⟩+ =
∆β

4π

∫
R
|T (E)|2

E sinh(∆βE)

cosh βLE
2 cosh βRE

2

dE > 0.

∆β = βL − βR. Landauer-Büttiker formula.
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Steady state heat fluxes:

⟨ΦL⟩+ + ⟨ΦR⟩+ = 0

⟨σ⟩+ = βL⟨ΦL⟩+ + βR⟨ΦR⟩+.

⟨ΦL⟩+ =
1

4π

∫
R
|T (E)|2

E sinh(∆βE)

cosh βLE
2 cosh βRE

2

dE.
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Idea of the proof–Jordan-Wigner transformation.

O is transformed to the even part of CAR(ℓ2(Z)) generated
by {ax, a∗x |x ∈ Z} acting on the fermionic Fock space F over
ℓ2(Z).

Transformed dynamics: generated by dΓ (h), where h is the
Jacobi matrix

hux = Jxux+1 + Jx−1ux−1 + λxux, u ∈ ℓ2(Z).

ΦR (and similarly ΦL, σ) is transformed to

iJNJN+1(a
∗
NaN+2 − a∗N+2aN)

iJNλN+1(a
∗
NaN+1 − a∗N+1aN).
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Decomposition

ℓ2(Z) = ℓ2(]−∞,−N−1])⊕ℓ2([−N,N ])⊕ℓ2([N+1,∞[),

hfr = hL + hC + hR,

h = hfr + vL + vR,

vR = JN(|δN+1⟩⟨δN |+ h.c)

The initial state ρ is transformed to the quasi-free state gener-
ated by

1

1+ eβLhL
⊕

1

2N +1
⊕

1

1+ eβRhR
.
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The wave operators

w± = s− lim
t→±∞

eithe−ithfr1ac(hfr)

exist and are complete.

The scattering matrix:

s = w∗
+w− : Hac(hfr) → Hac(hfr)

s(E) =

[
A(E) T (E)
T (E) B(E)

]
.
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T (E) =
2i

π
J−N−1JN⟨δN |(h−E− i0)−1δ−N⟩

√
FL(E)FR(E)

FL/R(E) = Im ⟨δL/R|(hL/R − E − i0)−1δL/R⟩,

δL = δ−N−1, δR = δN+1.

T (E) is non-vanishing on the set spac(hL) ∩ spac(hR).

Jx = const, λx = const (or periodic)

|T | = χσ(h)
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Assumption:
h has no singular continuous spectrum

Open question: The existence and formulas for Ep+ and ∆σ̂+.

Open question: NESS and entropy production if h has some
singular continuous spectra. Transport in quasi-periodic struc-
tures.
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HEISENBERG SPIN CHAIN

The Hamiltonian H of XY spin chain is changed to

HP = H + P

where

P =
1

2

∑
x∈[−N,N [

Kxσ
(3)
x σ

(3)
x+1.

The central part is now Heisenberg spin chain

1

2

∑
x∈[−N,N [

Jxσ
(1)
x σ

(1)
x+1 + Jxσ

(2)
x σ

(2)
x+1 +Kxσ

(3)
x σ

(3)
x+1

+
1

2

∑
x∈[−N,N ]

λxσ
(3)
x .
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Initial state remains the same. h is the old Jacobi matrix.

Fluxes and entropy production:

ΦL/R = i[HP , HL/R]

σ = βLΦL + βRΦR.

TD limit obvious. τP denotes the perturbed C∗-dynamics.
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Assumption For all x, y ∈ Z,∫ ∞

0
|⟨δx, eithδy⟩|dt < ∞.

Denote

ℓN =
∫ ∞

0
sup

x,y∈[−N,N [
|⟨δx, eithδy⟩|dt,

K̄ =
66

76
1

24N

1

ℓN
.
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Theorem. Suppose that

sup
x∈[−N,N [

|Kx| < K̄.

Then for all A ∈ O,

ρ+(A) = lim
t→∞

ρ(τ tP (A))

exists.
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Comments:

No time averaging. The constant K̄ is essentially optimal. With
change of the constant K̄ the result holds for any P depending
on finitely many σ

(3)
x :

P =
∑∏

Kxi1···xikσ
(3)
xi1

· · ·σ(3)xik
.

The NESS ρ+ is attractor in the sense that for any ρ-normal
initial state ω,

lim
t→∞

ω ◦ τ tP = ρ+.
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The map

({Kx}, βL, βR) 7→ ⟨σ⟩+ = ρ+(σ)

is real analytic. This leads to the strict positivity of entropy pro-
duction.

Green-Kubo linear response formula holds for thermodynamical
force X = βL − βR.

The above results are established in J-Pillet-Ogata (2007).

Bosonization Central Limit Theorem holds, J-Pautrat-Pillet (2009).

See also
Fröhlich-Merkli-Ueltschi: Dissipative transport: thermal contacts
and tunnelling junctions (2003)
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OPEN PROBLEM

The existence (and properties) of NESS

ρ+(A) = lim
t→∞

1

t

∫ t

0
ρ(τsP (A))ds

for all {Kx} ∈ R2N .

This is an open problem even if

P = K0a
∗
0a0a

∗
1a1.

Dependence of ⟨σ⟩+ on N?
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Idea of the proof: Jordan-Wigner transformation: τ tP is gener-
ated by

dΓ (h) +
1

2

∑
x∈[−N,N [

Kx(2a
∗
xax − 1)(2a∗x+1ax+1 − 1).

One proves that

γ+(A) = lim
t→∞

τ−t ◦ τ tP (A)

exists and is an ∗-automorphism of O. The starting point is the
Dyson expansion of τ−t ◦ τ tP . One then proceeds with careful
combinatorial estimates of each term in the expansion (Botvich-
Massen).
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FINE FORM OF THE SECOND LAW

Finite dimensional setup. Time-reversal invariance.

Spectral resolution

∆σ(t) =
1

t

∫ t

0
σsds =

∑
λPλ.

Time-reversal implies

dimPλ = dimP−λ.

Entropy balance equation (the germ of the second law)

1

t
S(ρt|ρ) = ⟨∆σ(t)⟩ =

∑
λtr(ρPλ) ≥ 0.
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Positive λ’s are favoured. Heat flows from hot to cold.

BAD NEWS: Unlike in the classical case, the relation (fine form
of the germ)

tr(ρP−λ)

tr(ρPλ)
= e−tλ

FAILS.

Cummulant generating function:

enaive(α) = log tr(ρe−αt∆σ(t))

= log tr(e−Se−α(St−S)).

Equivalent form of bad news:

enaive(α) = enaive(1− α)

FAILS.
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QUANTUM ENTROPIC FUNCTIONAL I

Kurchan, (Hal) Tasaki (2000), (Shuichi)Tasaki-Matsui (2003)

efcs(α) = log tr(e−(1−α)Se−αSt).

Renyi relative entropy:

efcs(α) = log tr(ρ1−α
t ρα).

Time reversal invariance implies that the symmetry

efcs(α) = efcs(1− α)

HOLDS.
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Tasaki-Matsui relative modular operator interpretation.

O = B(H), ⟨A,B⟩ = tr(A∗B). Ωρ = ρ1/2.

∆ρt|ρ(A) = ρtAρ−1.

efcs(α) = log⟨Ωρ,∆
−α
ρt|ρΩρ⟩

= log
∫
R
e−αtςdPt(ς).
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Atomic probability measure Pt is the spectral measure for the
operator

−
1

t
log∆ρt|ρ(A) = −

1

t
log∆ρ|ρ(A)−∆σ(t)A

and Ωρ.

efcs(α) = efcs(1− α) is equivalent to

Pt(−ς)

Pt(ς)
= e−tς .
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Kurchan-Tasaki interpretation gives the physical meaning:

efcs(α) is the cummulant generating function for the full count-
ing statistics of the repeated quantum measurement of

S = − log ρ =
∑

sPs

Measurement at t = 0 yields s with probability tr(ρPs).
State after the measurement:

ρPs/tr(ρPs).
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State at later time t:

e−itHρPse
itH/tr(ρPs).

Another measurement of S yields value s′ with probability

tr(Ps′e
−itHρPse

itH)/tr(ρPs).

The probability of measuring the pair (s, s′) is

tr(Ps′e
−itHρPse

itH)
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Probability distribution of the mean change of entropy

ς = (s′ − s)/t

is the spectral measure of Tasaki-Matsui:

Pt(ς) =
∑

s′−s=tς

tr(Ps′e
−itHPse

itH).

efcs(α) is the cummulant generating function for Pt. Note that

−
1

t
e′fcs(0) =

∑
ς
ςPt(ς) = ⟨∆σ(t)⟩.
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QUANTUM ENTROPIC FUNCTIONAL II

J-Ogata-Pautrat-Pillet (2011).

evar(α) = log tr(e−(1−α)S−αSt).

Time reversal implies

evar(α) = evar(1− α)

Variational characterization:

evar(α) = − inf
ω

(αtr(ω(St − S)) + S(ρ|ω)) .

Golden-Thompson:

evar(α) ≤ efcs(α).

48



Herbert Stahl (2011): Bessis-Moussa-Villani conjecture.

There exist probability measure Qt such that

evar(α) = log
∫
R
e−αtςdQt(ς).

evar(α) = evar(1− α) implies

dQt(−ς)

dQt(ς)
= e−tς .

Qt is not an atomic measure.

Is this measure experimentally accessible (even in principle)?

Note that

−
1

t
e′var(0) =

∑
ς
ςQt(ς) = ⟨∆σ(t)⟩.
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ALGEBRAIC BMV CONJECTURE

(M, τ t,Ω) W ∗-dynamical system on a Hilbert space H. Ω is
(τ, β)-KMS vector.

τ t(A) = eitLAe−itL.

V ∈ M selfadjoint, ΩV the β- KMS vector for perturbed dynam-
ics

τ tV (A) = eit(L+V )Ae−it(L+V ).

ΩV = e−
β
2(L+V )Ω
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The Pierls-Bogoluibov and Golden-Thompson inequality hold:

e−β⟨Ω,VΩ⟩/2 ≤ ∥ΩV ∥ ≤ ∥e−βV/2Ω∥.

CONJECTURE:
There exists measure Q on R such that for α ∈ R,

∥ΩαV ∥2 =
∫
R
eαϕdQ(ϕ).

Finite systems:

∥ΩαV ∥2 = tr(e−β(H+αV ))/tr(e−βH).
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REMARKS

• Mathematical structure of finite time theory deals directly
with infinitely extended system within the framework of al-
gebraic quantum statistical mechanics.

Critical role: Modular theory of W ∗-dynamical systems (Araki,
Connes, Haagerup) and Araki-Masuda theory of non-commutative
Lp-spaces (1982).

Araki, H., Masuda, T. (1982). Positive cones and Lp-spaces
for von Neumann algebras. Publ. RIMS, Kyoto Univ. 18,
339–411.

• Benefit of unraveling the algebraic structure of entropic func-
tionals: Quantum Ruelle transfer operators (J-Pillet (2011))
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• Concrete models: Thermodynamic limit of the finite time
finite volume structures.

• The existence and regularity of (p = fcs, var)

ep+(α) = lim
t→∞

1

t
ept(α)

is a difficult problem in physically interesting models.
Link with quantum Ruelle resonances.

• Closed formulas in the XY -chain case (J-Landon-Pillet (2013))



-0.5 0.5 1.0 1.5

-1

1

2

3

e′p+(0) = −⟨σ⟩+, e′p+(1) = ⟨σ⟩+
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IMPLICATIONS

• p = fcs, the large deviation principle and central limit theo-
rem for the full counting statistics of entropy/energy/charge
transport.
Pioneering work: W. De Roeck (2009).

• p = var. The large deviation principle and central limit the-
orem for the BMV Qt. Quantum version of Gallavotti’s lin-
ear response theory (generalized symmetries). The Green-
Kubo formulas, Onsager reciprocity relations and the Fluctuation-
Dissipation Theorem follow from those symmetries (alterna-
tive derivation: J-Ogata-Pillet (2006)).

• Many topics have not been discussed!
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RECENT DEVELOPMENTS (ONE LOOSE END CLOSED)

• 2022 paper Benoist, Bruenau, J, Panati, Pillet.

• FCS ⇔ ancilla quantum state trajectory tomography

• Novel observational status of FCS + novel class of quan-
tum transfer operators.

• entropic quantum trajectory stability and Quantum Gallavotti-
Cohen theory (entropic fluctuations wrt NESS)

• next week talk of Annalisa Panati!
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