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Statistical mechanics away from equilibrium is in a formative
stage, where general concepts slowly emerge.

David Ruelle (2008)



QUANTUM STATISTICAL MECHANICS

e Classical monographs (equilibrium theory):

Ruelle: Statistical Mechanics: Rigorous Results (1969),
Bratteli-Robinson: Operator Algebras and Quantum Statistical Mechan-
ics. 1,11 (1979/81);

Haag: Local Quantum Physics (1992);

Israel: Convexity in the Theory of Lattice Gases (1979),

Simon: The Statistical Mechanics of Lattice Gases (1993),

Thirring: Quantum Mathematical Physics: Atoms, Molecules and Large
Systems (1980),



These lectures deal with the second of two relatively "recent” re-
search directions in the theory of quantum dynamical systems.

e The problem of return to equilibrium (Robinson 1973); 1996—

e Development of non-equilibrium quantum statistical mechan-
ics; 2001—



Reviews:

Ruelle: Topics in quantum statistical mechanics and operator algebras (2001);
J-Pillet: Mathematical theory of non-equilibrium quantum statistical mechan-

ics (2002),;

Pillet: Quantum dynamical systems (2006),

Aschbacher-J-Pautrat-Pillet: Introduction to non-equilibrium quantum statis-

tical mechanics (2006);

J-Ogata-Pautrat-Pillet: Entropic fluctuations in quantum statistical mechanics

— an introduction (2012).

Papers:

Ruelle: Natural nonequilibrium states in quantum statistical mechanics (2000),
Ruelle: Entropy production in quantum spin systems (2001);

J-Pillet: On entropy production in quantum statistical mechanics (2001),

Many others...



ROOTS

Quantum theory was much influenced by dynamical system ap-
proach to classical non-equilibrium statistical mechanics devel-
oped in 1990’s (Chaotic hypothesis of Gallavotti-Cohen)

Reviews:

Ruelle: Smooth dynamics and new theoretical ideas in nonequilibrium statis-
tical mechanics (1999);

Gallavotti: Thermostats and chaotic hypothesis (2006);

J-Pillet-Rey-Bellet: Entropic fluctuations in statistical mechanics |. Classical

dynamical systems (2011);



ENTROPY PRODUCTION OBSERVABLE
Hilbert space H, dimH < co. Hamiltonian H.
Observables: O = B(H). (A, B) = tr(A*B).
State: density matrix p > 0. p(A) = tr(pA) = (A).

Time-evolution:
_ —itH _.itH
pt = € pe

Ot — eitHOe—itH

The expectation value of O at time t:

(Or) = tr(pOy) = tr(pt0) = pt(A)



"Entropy observable” (information function):

S = —1logp.
Entropy:

S(p) = —tr(plogp) = (S).

Average entropy production over the time interval [0, ¢]:

1
Ac(t) = ?(St —9).
Entropy production observable

o= g%Aa(t) = i[H, S].

1 rt
Aoc(t) = ?/O osds.



The entropy production observable = "quantum phase space
contraction rate”.

Radon-Nikodym derivative=relative modular operator

A, (A) = pAp~T.

AUAE is a self-adjoint operator on © and

tr(pd 1, (A)) = tr(prA)



log A, ,(A) = (logp)A — Alog p

= log A, ,(A) + (/Ot J_Sds) A

d
a log APt|P(A)‘t:0 = g A.



BALANCE EQUATION

Relative entropy
S(ptlp) = tr(pt(log pt — 109 p))

1/2

= (p+/? log A | pi/?

pelpPt 1 =

1 1 t
—S(plp) = (Do) = - [ (os)ds

tJo

) > 0.

10



OPEN QUANTUM SYSTEMS

11



S = Ro. Hilbert spaces H;, k = 0,--- , M. Hamiltonians H;.

Initial states
o, = e etk 7,
Composite system:
H=HoQ - QH)N
pP=p0RQ & pp
He = Z Hy,

H = Hg + V.
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Energy change of R, over the time interval [0, ¢]:

1 . -
AQ(t) = ;(e'tHer ).

The energy flux observable

t—0

1 rt
AQp(t) = ;/O Ppsds.
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The balance equation takes the familiar form:

S =) BypHj + const
Ao(t) =) BrAQ(t)
o= BrpPg

(Ac(t)) =) Br(AQ(t)) > 0.

Heat flows from hot to cold.

14
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GOAL |

(Do(1)) = %/Ot<as>ds.

TD= Thermodynamic limit. Existence of the limit (steady state
entropy production):

(0)4 = Jim lim(Ao(1))
(o)4 > 0. Strict positivity:

<(7>_|_ > 0.
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GOAL I

More ambitious: non-equilibriium steady state (NESS). TD leads
to C* quantum dynamical system (O, 7t, p).

1t
p(A) = Jim — [ p(r*(4))ds.

(o)1 = py (o).

Structural theory:

o+ >0 < py Lo
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THE REMARK OF RUELLE

D. Ruelle: "How should one define entropy production for nonequi-
librium quantum spin systems?” Rev. Math. Phys. 14,701-

707(2002)

The balance equation

(Ao (b)) =D Br(AQk(1)).

can (should?) be written differently.
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Hyp = Qjxk Hj State of the k-th subsystem at time ¢:

ASK(1) = (S(ore) ~ S(pp)):

Aoy(®) = S(pwalon)

AS() =Y AS,(t)

AG(t) =) Aoi(t).
Obviously,
Ac(t) > 0.
> S(pr) = S(p) = S(pt) and by the sub-additivity:
AS(t) > 0.
19



One easily verifies

(Ao (b)) = AS() + A ().

Set

— . . A -
S = im g AS(
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OPEN PROBLEMS

Mathematical structure of the decomposition

(@) + =Ep4 + Ady.

The existence of Ep_ and Ao in concrete models (to be dis-
cussed latter).

When is Aoy = 07 Ruelle: Perhaps when the boundaries be-
tween the small system and the reservoirs are allowed to move
to infinity. This limit is more of less imposed by physics, but
seems hard to analyze mathematically.
Another possibility: adiabatically switched interaction (quasi-static
process)?
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XY SPIN CHAIN

A = [A, B] C Z, Hiloert space Hpn = @ ep C2.
Hamiltonian

Z Jx (Jél)aéi)l + 0;%”023_)1)

(1) _ |0 1 2 | 0 —i 3 |1 O
oz —[1 o]’ oz _[i o]’ oz _[o ~1
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O @ @ ® 00

Central part C (small system S): XY-chain on Ay = [—N, N].

Two reservoirs Ry, g: XY-chains on A, = [-M, —N — 1] and
Ap =[N + 1, M].

N fixed, thermodynamic limit M — oo.

Decoupled Hamiltonian He = Hp, + Hp, + Hpp-

23



The full Hamiltonian is

H = Hp,un,ung = Her + Vi + Vg,

v, = J=N-1 (0(_1> oD 4 o2 10(2)) etc.

2

Initial state:

0= e PLHN, & po ® e_BRH/\R/Z,

PO = 1/dim H/\C.

Fluxes and entropy production:
P r=I[H, Hp /Rl

o= PP+ BrPk.
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Araki-Ho, Ashbacher-Pillet ~ 2000-2003
J-Landon-Pillet 2013: NESS exists and

Esinh(ABE)

AB/ 5
oYy =— | |T(F)
() am Rl | cosh —BgE cosh —BgE

Ap = B;, — Br. Landauer-Buittiker formula.

dE > 0.

25



Steady state heat fluxes:

(Pr)y +(PRr)+ =0

(o) 4 = Br(PL)+ + Br(PR) 4+

@p)4 =5 [ IT(B)

Esinh(ABE)

cosh BLTE cosh BRTE

dE.
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|dea of the proof—Jordan-Wigner transformation.

O is transformed to the even part of CAR(¢2(Z)) generated
by {az,a} |z € Z} acting on the fermionic Fock space F over

02(2).
Transformed dynamics: generated by dI'(h), where h is the
Jacobi matrix

hug = Jyuzyq + Jp—1uz—1 + Azug, u € 12(2).

@ (and similarly ®;, o) is transformed to
iJnIny1(anango — anyoan)
iJN)\N+1(a}kVaN_|_1 — a7V+1aN)'
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Decomposition

(2(2) = £7(] =00, —N —1]) @£*([-N, N]) @ £*([N + 1, 00[),
her = hr, + h¢ + hpg,
h = hf +vp, + VR,

vp = JN(|dn41)(6N] + h.C)

The initial state p is transformed to the quasi-free state gener-
ated by
1 1 1

1 + ePrhr ® 2N + 1 ® 1 + ePrhr’
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The wave operators
wt =s— lim ee r15c(he)
t—+o0

exist and are complete.

The scattering matrix:

s = whw_ : Hac(he) — Hac(he)

_[a® 1T(E)
s(B) = [T(E) B(E)]'
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T(B) = 2 J_y_1 I3 {63|(h— B~10)16_y)\/FL(B) F(B)

Frr(E) =1m (51 gl(hy/gr — E —i0)" 167 /R),

o, =0_N-1, OR = 0N 41
T(E) is non-vanishing on the set spyc(hr) Nspac(hpr).

Jr = const, Ay = const (or periodic)

|T| — Xa(h)
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Assumption:
h has no singular continuous spectrum

Open question: The existence and formulas for Ep_ and Ac .

Open question: NESS and entropy production if A has some
singular continuous spectra. Transport in quasi-periodic struc-
tures.
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HEISENBERG SPIN CHAIN

The Hamiltonian H of XY spin chain is changed to
Hp=H4+P

where
1
R ONON
x€[—N,N|
The central part is now Heisenberg spin chain

Iy 1oL ® + 1,0P0 @), + Kuo®o®)

a:—l—l
2 xe[—N,N]|

4+ — Z )\xa(?’).
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Initial state remains the same. h is the old Jacobi matrix.

Fluxes and entropy production:
&g =ilHp,Hr /R

0= PrPr + BrPR.

TD limit obvious. 7p denotes the perturbed C'*-dynamics.
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Assumption For all z,y € Z,

/O (6, €t76,)|dt < oo.

Denote

eN:/ sup {0z, eiths,)|dt,
0 x,yE[—N,N[
6° 1 1

K = .
7024N 0y
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Theorem. Suppose that

sup |Kz| < K.
x€[—N,N]|

Thenforall A € O,

p(A) = lim p(h(A))

exists.
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Comments:

No time averaging. The constant K is essentially optimal. With

change of the constant K the result holds for any P depending

on finitely many 0:(1;3)3

3 3
P =] Kooy 087 - 08,

The NESS p_ is attractor in the sense that for any p-normal
initial state w,

lim wo 7L = .
t—00 P p+
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The map

({Kz}, 8L, Br) — (0)4 = p4(0)

is real analytic. This leads to the strict positivity of entropy pro-
duction.

Green-Kubo linear response formula holds for thermodynamical
force X = Br — BR'

The above results are established in J-Pillet-Ogata (2007).
Bosonization Central Limit Theorem holds, J-Pautrat-Pillet (2009).
See also

Frohlich-Merkli-Ueltschi: Dissipative transport: thermal contacts
and tunnelling junctions (2003)
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OPEN PROBLEM

The existence (and properties) of NESS

1t
p(A) = fim = [ p(rp(4))ds

for all {K;} € R2N,

This is an open problem even if

P = Kpajapaiay.
Dependence of (o)4 on N?
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Idea of the proof: Jordan-Wigner transformation: Tltg IS gener-
ated by

1
dI'(h) + 5 > Kz(2ayaz — 1)(2a,4 10541 — 1).
xe[—N,N|

One proves that

Y (A) = lim 7 o mh(A)

exists and is an x-automorphism of O. The starting point is the
Dyson expansion of 7% o 75,. One then proceeds with careful
combinatorial estimates of each term in the expansion (Botvich-
Massen).
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FINE FORM OF THE SECOND LAW
Finite dimensional setup. Time-reversal invariance.

Spectral resolution

1 rt
Ac(t) = ;/O osds = S APy

Time-reversal implies

dim P)\ = dim P—)v

Entropy balance equation (the germ of the second law)

“S(alp) = (Bo() = Y Atr(pPy) > 0.
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Positive \’s are favoured. Heat flows from hot to cold.

BAD NEWS: Unlike in the classical case, the relation (fine form
of the germ)

tr(pP_)) ot
tr(pPy)

FAILS.

Cummulant generating function:

enaive(a) = log tr(Pe_atAa(t))

= log tr(e_Se_O‘(St_S)).

Equivalent form of bad news:
enaive(a) = enaive(1l — @)

FAILS.
41



QUANTUM ENTROPIC FUNCTIONAL |

Kurchan, (Hal) Tasaki (2000), (Shuichi)Tasaki-Matsui (2003)

ercs(a) = log tr(e— (1—a)Se—ash),

Renyi relative entropy:

efcs(@) = log tr(P%_aPa)-

Time reversal invariance implies that the symmetry

efcs(Oé) — 6fcs(l — o)
HOLDS.
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Tasaki-Matsui relative modular operator interpretation.
O = B(H), (A, B) = tr(A*B). Q, = pl/2.
Apt|p(A) — ptAp_l'

efcs(a) = 109(€2p, A1 Qp)

= Iog/Re_O‘tngP)t(g).
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Atomic probability measure P; is the spectral measure for the
operator

1 1
——10g Ay, (A) = ——log A, (A) — Ao () A
and €2,.

Pt(_g)_ —tg
P:(s) —°

44



Kurchan-Tasaki interpretation gives the physical meaning:

ercs () is the cummulant generating function for the full count-
ing statistics of the repeated quantum measurement of

S=—logp=> sPs

Measurement at ¢t = 0 yields s with probability tr(pPs).
State after the measurement:

pPs/tr(pPs).
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State at later time ¢;

e_ithPSeitH/tr(pPs).

Another measurement of S yields value s’ with probability

tr(P e 1 ppe™Y /tr(pPs).

The probability of measuring the pair (s, s’) is

tr(P et ppselt)

46



Probability distribution of the mean change of entropy

¢ = (s — s)/t

is the spectral measure of Tasaki-Matsui:

Pi(s) = Y tr(Pye 't peltly,

s/ —s=tc¢

ercs () is the cummulant generating function for P;. Note that

_%G%CS(O) — ZgPt(C) = <A0'(t)>
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QUANTUM ENTROPIC FUNCTIONAL I

J-Ogata-Pautrat-Pillet (2011).

evar(a) = log tr(e~(1—a)S—adh),

Time reversal implies

evar(a) = evar(1l — )

Variational characterization:

evar(a) = —inf (atr(w(S; — 5)) + S(plw)) .

Golden-Thompson:

evar(a) < efcs(a).
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Herbert Stahl (2011): Bessis-Moussa-Villani conjecture.

There exist probability measure Q¢ such that

evar(a) = log /R e~ dQs(<).
€Var(Oé) = evar(l — Oé) |mpIIeS

th(—C) — e—tg
dQ¢(s) |

Q¢+ I1s not an atomic measure.

Is this measure experimentally accessible (even in principle)?

Note that
1

—ze(,ar(O) = > <Qi(s) = (Ac(t)).
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ALGEBRAIC BMV CONJECTURE

(O, rt, Q) W*-dynamical system on a Hilbert space H. 2 is
(7, B)-KMS vector.

Tt(A) — eitLAe_itL.
V € M selfadjoint, 2y, the 5- KMS vector for perturbed dynam-

icS
A (A) = St (LA+V) go—it(L+V)

Qy = e—g(L-l—V)Q

50



The Pierls-Bogoluibov and Golden-Thompson inequality hold:

e PELVED/2 <1y < e PV/2Q).

CONJECTURE:
There exists measure @ on R such that for a € R,

12vI2 = [, e*dQ(9).

Finite systems:

Qa1 = tr(e PEFTEV)Y jtr(e=BH),
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REMARKS

e Mathematical structure of finite time theory deals directly
with infinitely extended system within the framework of al-
gebraic quantum statistical mechanics.

Critical role: Modular theory of W*-dynamical systems (Araki,
Connes, Haagerup) and Araki-Masuda theory of non-commutative
LP-spaces (1982).

Araki, H., Masuda, T. (1982). Positive cones and LP-spaces
for von Neumann algebras. Publ. RIMS, Kyoto Univ. 18,
339-411.

e Benefit of unraveling the algebraic structure of entropic func-
tionals: Quantum Ruelle transfer operators (J-Pillet (2011))
52



e Concrete models: Thermodynamic limit of the finite time
finite volume structures.

e The existence and regularity of (p = fcs, var)

1

ept(@) = Jim ~epi(a)

is a difficult problem in physically interesting models.
Link with quantum Ruelle resonances.

e Closed formulas in the X'Y'-chain case (J-Landon-Pillet (2013))
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IMPLICATIONS

e p = fcs, the large deviation principle and central limit theo-

rem for the full counting statistics of entropy/energy/charge
transport.

Pioneering work: W. De Roeck (2009).

e p = var. The large deviation principle and central limit the-
orem for the BMV Q;. Quantum version of Gallavotti’s lin-
ear response theory (generalized symmetries). The Green-
Kubo formulas, Onsager reciprocity relations and the Fluctuation-
Dissipation Theorem follow from those symmetries (alterna-
tive derivation: J-Ogata-Pillet (2006)).

e Many topics have not been discussed!
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RECENT DEVELOPMENTS (ONE LOOSE END CLOSED)

e 2022 paper Benoist, Bruenau, J, Panati, Pillet.

e FCS < ancilla quantum state trajectory tomography

e Novel observational status of FCS + novel class of quan-
tum transfer operators.

e entropic quantum trajectory stability and Quantum Gallavotti-
Cohen theory (entropic fluctuations wrt NESS)

e next week talk of Annalisa Panati!
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